# (make sure ws_regs is projected first)distMat <-hausMat(ws_regs, f1 =0.5)distMat/5280# save output# saveRDS(distMat, file = "~/Documents/GitHub/Spatial_Extreme_Value_Modeling/Data/hMat_med.rds")
# read in previously computed Hausdorff matrix and convert units to mileshMat <-readRDS(file ="Data/hMat_med.rds")hMat_miles <- hMat/5280## Create weight matrix for each window ## Accounts for different numbers of stations (varying point-to-area structure)## Jiters the values to give valid weight matrixset.seed(24)D_22 <-get_sym_car_mat(dat_win_22, hMat_miles)D_52 <-get_sym_car_mat(dat_win_52, hMat_miles)D_82 <-get_sym_car_mat(dat_win_82, hMat_miles)
1.4 Fit models to each window for each parameter
To obtain region-level estimates of the GPD parameters, fit a conditional auto-regressive model for each GPD parameter for each window, a total of 9 models.
Reg1 Reg2 Reg3
25-yr RL 11.634249 10.4422599 11.3992557
SE 0.687375 0.5856544 0.5461398
100-yr RL 16.479569 14.2913625 15.8560177
SE 1.243511 1.0239274 0.9666489
500-yr RL 24.130583 20.0023744 22.7002292
SE 2.309727 1.8186076 1.7503930
1.6 Block Kriging
Data for Block Kriging Return Level plots from Fagnant ’21 (Block Kriging sections of Tables 5.3, 5.6, 5.7). Data also included in manuscript in Block Kriging section of Tables S5, S6, S2, and 3.
ggsave("Images/BK_plot.png", plot = BK_plot, width =7.5, height =3.5, units ="in")
1.7 Regional Max
Data for Regional Max Return Level plots from Fagnant ’21 (Regional Max sections of Tables 5.3, 5.6, 5.7). Data also included in manuscript in Regional Max section of Tables S5, S6, S2, and 3.